
Math 120A
Differential Geometry

Midterm 1

Instructions: You have 50 minutes to complete the exam. There are five problems, worth a
total of fifty points. You may not use any books or notes. Partial credit will be given for progress
toward correct proofs.

Write your solutions in the space below the questions. If you need more space use the
back of the page. Do not forget to write your name in the space below.

Name:

Question Points Score

1 10

2 10

3 10

4 10

5 10

Total: 50



Problem 1.
Let C be the curve given by the Cartesian equation

y2 = x(1− x2)

(a) [5pts.] For what range(s) of values of t is γ(t) = (t,
√
t− t3) a parametrization of

part of this curve? What part(s) of the curve does it parametrize?

Solution: We have (
√
t− t3)2 = t(1−t2) = t−t3 exactly where t−t3 is positive,

so in particular when t ∈ (−∞,−1] and when t ∈ [0, 1]. Since we parametrize
on open intervals, most correctly we might say that it is a parametrization on
(−∞,−1) and on (0, 1).

(b) [5pts.] Explain why this curve cannot be written as a parametrization on a single
interval.

Solution: This curve isn’t connected; there are solutions to the equation above
for x ≤ −1 and 0 ≤ x ≤ 1, but not for −1 < x < 0. Therefore it cannot be
written as a single parametrization on a connected interval.

Problem 2.

(a) [5pts.] Describe all of the unit-speed parameters for a regular curve γ(t) ∈ Rn.

Solution: If s is the arclength of γ(t) starting at some t0, the possible unit
speed parameters are ±s+ c, for c a constant.

(b) [5pts.] For t ∈ (−∞,∞) and k > 0, let γ(t) = (ekt cos t, ekt sin t) be a logarithmic
spiral. Show there is a unique unit speed parameter u(t) for γ such that u(t) → 0
as t→ −∞ and u(t)→∞ as t→∞.

Solution: The arclength of γ starting at 0 is
∫ t
0
||γ′(u)||du =

∫ t
0

√
1 + k2ekudu =

√
1+k2

k
ekt, so the possible unit speed parameters are ±

√
1+k2

k
ekt + c. However,

√
1+k2

k
ekt itself is the only one of these parameters with the limits specified above.

Problem 3.

(a) [5pts.] Define the signed curvature of a unit speed plane curve γ. What is its
relationship to the curvature of γ?

Solution: Let t be the unit tangent vector of γ and ns be the signed unit
normal obtained by rotating t clockwise by π

2
. The signed curvature is the

value κs such that ṫ = κsns, where the dot denotes derivative with respect to
arclength. If κ is the ordinary curvature, we have |κs| = κ.



(b) [5pts.] Recall that the total signed curvature of a closed unit speed curve γ(t) is∫ `
0
κs(u)du, where ` is the length of the curve. Prove the total signed curvature is

an integer multiple of 2π. (Hint: Recall κs is the derivative of another function.)

Solution: Recall that κs = φ′(t), where φ(t) is the turning angle. Therefore∫ `
0
κs(u)du = φ(`)−φ(0). But the unit tangent vectors of γ(t) at t = 0 and t = `

must be the same, so (cos(φ(0)), sin(φ(0))) = (cos(φ(`)), sin((φ(`))), implying
that φ(`)− φ(0) = 2πn for some integer n.

Problem 4.

(a) [5pts.] Give a formula for the torsion of (i) a unit speed curve and (ii) a regular
curve. Do not forget to mention any hypotheses you need for your formula to make
sense.

Solution: Let γ be a unit speed curve with everywhere nonzero curvature κ,
t be its unit tangent vector, and n = 1

κ
ṫ be its preferred unit normal. Then if

b = t × n is the binormal vector, τ is the number satisfying ḃ = −τn. More
generally, if γ is an arbitrary regular curve with everywhere nonzero curvature,
its torsion is given by

...
γ · (γ̇ × γ̈)

||γ̈ × γ̇||2

(b) [5pts.] Prove that the following curve is planar.

γ(t) =

(
1 + t2

t
, t+ 1,

1− t
t

)
[Hint: It is possible to see this at a fairly early step in the computation.]

Solution: A regular curve in R3 with everywhere nonzero curvature is planar if and
only its torsion is identically zero. We observe that

γ̇(t) =

(
1− 1

t2
, 1,− 1

t2

)
γ̈(t) =

(
2

t3
, 0,

2

t3

)
...
γ (t) =

(
− 6

t4
, 0,− 6

t4

)



Clearly γ̈(t) × γ̇(t) 6= 0, since in particular its first coordinate is 2
t3
6= 0. So κ is

nonzero everywhere. Moreover,
...
γ (t) and γ̈(t) are colinear, so

...
γ · (γ̈ × γ̇) = 0. Ergo

the torsion of γ is identically zero, so γ is planar.

Also accepted: The dot product of γ(t) with (1,−1,−1) is 0 for all t. But of course
the idea was to use torsion.

Problem 5.

(a) [5pts.] Let γ be a unit-speed curve in R3 of nonzero curvature. State the Frenet-
Serret equations.

Solution: Let t = γ̇(s) be the unit tangent vector of γ, n be the unit normal
in the direction of γ̈(s), and b = t× n be the binormal vector. Then we have

ṫ = κn

ṅ = −κt + τb

ḃ = −τn

(b) [5pts.] Let γ(t) be a unit speed curve, and let δ(t) = γ′(t) = t be the spherical curve
traced out by the unit tangent vector. Show that if s is an arc-length parameter
for γ, then ds

dt
= κ. Then determine the curvature of δ.

Solution: The tangent vector δ′(t) = ṫ = κn has length κ everywhere, so ds
dt

= κ.
Moreover, the unit tangent vector of δ(t) is n. The derivative of the unit tangent
vector of δ with respect to arc length s is then d

ds
n = dt

ds
· d
dt

n = 1
κ
(−κt + τb). The

length of this vector is the curvature. But t ⊥ b, so this length is
√

1
κ2

(κ2 + τ 2) =√
1 + κ2

τ2
.


